Stable project allocation under distributional constraints
نویسندگان
چکیده
In a two-sided matching market when agents on both sides have preferences the stability of the solution is typically the most important requirement. However, we may also face some distributional constraints with regard to the minimum number of assignees or the distribution of the assignees according to their types. These two requirements can be challenging to reconcile in practice. In this paper we describe two real applications, a project allocation problem and a workshop assignment problem, both involving some distributional constraints. We used integer programming techniques to find reasonably good solutions with regard to the stability and the distributional constraints. Our approach can be useful in a variety of different applications, such as resident allocation with lower quotas, controlled school choice or college admissions with affirmative action.
منابع مشابه
A Budgeting Model for the Safety Unit of an Under Construction Metro Station in Tehran Using a Robust Optimization
Background: The construction of metro lines is a high-risk project. Using a budget-based model for the safety units of metro construction projects can help safety managers to spend optimal budget allocation. The purpose of this study was to plan a budget model based on safety unit performance in an under construction metro station for better budget allocation using robust optimization. Methods...
متن کاملStability concepts in matching under distributional constraints
Many real matching markets are subject to distributional constraints. To guide market designers faced with constraints, we propose new stability concepts. A matching is strongly stable if satisfying blocking pairs inevitably violates a constraint. We show that a strongly stable matching may not exist, and that existence is guaranteed if and only if all distributional constraints are trivial. To...
متن کاملA Bi-level Formulation for Centralized Resource Allocation DEA Models
In this paper, the common centralized DEA models are extended to the bi-level centralized resource allocation (CRA) models based on revenue efficiency. Based on the Karush–Kuhn–Tucker (KKT) conditions, the bi-level CRA model is reduced to a one-level mathematical program subject to complementarity constraints (MPCC). A recurrent neural network is developed for solving this one-level mathematica...
متن کاملThe Problem of Optimal Asset Allocation with Stable Distributed Returns
This paper discusses two optimal allocation problems. We consider different hypotheses of portfolio selection with stable distributed returns for each of them. In particular, we study the optimal allocation between a riskless return and risky stable distributed returns. Furthermore, we examine and compare the optimal allocation obtained with the Gaussian and the stable non-Gaussian distribution...
متن کاملTwo algorithms for the Student-Project Allocation problem
We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals / Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.04484 شماره
صفحات -
تاریخ انتشار 2017